Controversies in Coronary Revascularization

Atlanta CCU
April 15, 2016

Habib Samady MD FACC FSCAI
Professor of Medicine
Director, Interventional Cardiology, Emory University
Director, Cardiac Catheterization Laboratory, Emory University Hospital

Disclosures

Grant Support

- Medtronic, PI SHEAR STENT Trial
- Abbott Vascular, PI Restoration Study (Subanalysis of ABSORB III Img.)
- Gilead, PI MARINA Trial Giliead
- Volcano Therapeutics, Research Grants and Steering Comm ADVISE II
- St. Jude Medical, Research Grants and Steering Comm ILUMIEN III
- American Heart Association, Mentor Fellowship Awards
- National Institute of Health, Co-I NIH ROI/PPG
- American College of Cardiology, Deputy Editor, JACC Interventions
Controversies in Coronary Revascularization

• SIHD
 - Accepted Indications for revascularization
 - Controversies in revascularization
 - How much Ischemia to Revascularize
 - How to revascularize 3 VD: CABG vs PCI vs HCR
 - How to revascularize LMCA: CABG vs PCI

• ACS
 - Accepted Indications for revascularization
 - Controversies in revascularization
 - Non culprit vessel in STEMI: PCI vs Med tx.
 - Culprit vessel in STEMI: Angio vs OCT guided
Clinical Presentation

Stable angina

STEMI

CCS Class IV

Severity of Angina

ASx, CCS Class I

High risk

Ischemia Tests/Prognostic Factors

None, Low risk

Max

Medical Therapy

None

Anatomic Disease

LM + 3v CAD

* CHF, DM, Low LVEF

Appropriateness Criteria: Key Variables

Patel, et al. JACC 2009; 53:530-553

Controversies in Coronary Revascularization

• SIHD
 - Accepted Indications for revascularization
 - Controversies in revascularization
 - How much Ischemia to Revascularize
 - How to revascularize 3 VD: CABG vs PCI vs HCR
 - How to revascularize LMCA: CABG vs PCI

• ACS
 - Accepted Indications for revascularization
 - Controversies in revascularization
 - Non culprit vessel in STEMI: PCI vs Med tx.
 - Culprit vessel in STEMI: Angio vs OCT guided
Courage Trial

N=2287 pt
Stable angina

Survival Benefit with Revascularization
Stratified by Ischemic Risk

N=10 627 undergoing MPI with 1.9 ±0.6 year f/u propensity matched.

Hachamovitch et al Circulation. 2003; 107:2900-2907
SPECT MPI Does Not Localize Regional Ischemia in Severe Multivessel Disease

N=143 pts, with severe 3 VD who underwent Gated SPECT with 1 month

Lima..Samady JACC, 2003;42:64-70

Complexity of Angiographic Lesion Assessment

Kern and Samady. JACC 2010;55:173-185
Fractional Flow Reserve

Validation of FFR For Intermediate Lesion Assessment

<table>
<thead>
<tr>
<th>Index</th>
<th>Author (Ref. #)</th>
<th>n</th>
<th>Ischemic Test</th>
<th>BCV</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFR</td>
<td>Pijls et al. (2)</td>
<td>60</td>
<td>X-ECG</td>
<td>0.74</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>DeBruyne et al. (26)</td>
<td>60</td>
<td>X-ECG/SPECT</td>
<td>0.72</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Pijls et al. (1)</td>
<td>45</td>
<td>X-ECG/SPECT/pacing/DSE</td>
<td>0.75</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Bartunek et al. (27)</td>
<td>37</td>
<td>DSE</td>
<td>0.68</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Abe et al. (28)</td>
<td>46</td>
<td>SPECT</td>
<td>0.75</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Chamuleau et al. (29)*</td>
<td>127</td>
<td>SPECT</td>
<td>0.74</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Ceyhan et al. (30)</td>
<td>40</td>
<td>SPECT</td>
<td>0.76</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Jimenez-Nava et al. (31)</td>
<td>21</td>
<td>DSE</td>
<td>0.75</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Usui et al. (32)</td>
<td>167</td>
<td>SPECT</td>
<td>0.75</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Yonagawa et al. (33)</td>
<td>167</td>
<td>SPECT</td>
<td>0.75</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Meuwissen et al. (34)</td>
<td>151</td>
<td>SPECT</td>
<td>0.74</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>DeBruyne et al. (35)</td>
<td>57</td>
<td>MIIBI-SPECT/post-MI</td>
<td>0.78</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Samady et al. (36)</td>
<td>48</td>
<td>MIIBI-SPECT/post-MI</td>
<td>0.78</td>
<td>85</td>
</tr>
</tbody>
</table>

Kern and Samady. JACC 2010;55:173-185
FAME 2: FFR-Guided PCI versus Medical Therapy in Stable CAD

Stable CAD patients scheduled for 1, 2 or 3 vessel DES-PCI
N = 1220

- **Randomized Trial**: FFR in all target lesions
- **Registry**: 50% randomly assigned to FU

Follow-up after 1, 6 months, 1, 2, 3, 4, and 5 years

Primary Outcomes

- **PCI+MT vs. MT**: HR 0.32 (0.19-0.53); p<0.001
- **PCI+MT vs. Registry**: HR 1.29 (0.49-3.39); p=0.61
- **MT vs. Registry**: HR 4.32 (1.75-10.7); p<0.001

<table>
<thead>
<tr>
<th>Months after randomization</th>
<th>MT</th>
<th>PCI+MT</th>
<th>Registry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>447</td>
<td>447</td>
<td>166</td>
</tr>
<tr>
<td>1</td>
<td>414</td>
<td>414</td>
<td>156</td>
</tr>
<tr>
<td>2</td>
<td>370</td>
<td>388</td>
<td>145</td>
</tr>
<tr>
<td>3</td>
<td>322</td>
<td>351</td>
<td>133</td>
</tr>
<tr>
<td>4</td>
<td>283</td>
<td>308</td>
<td>117</td>
</tr>
<tr>
<td>5</td>
<td>253</td>
<td>277</td>
<td>106</td>
</tr>
<tr>
<td>6</td>
<td>220</td>
<td>243</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td>192</td>
<td>212</td>
<td>74</td>
</tr>
<tr>
<td>8</td>
<td>162</td>
<td>175</td>
<td>64</td>
</tr>
<tr>
<td>9</td>
<td>127</td>
<td>155</td>
<td>52</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>117</td>
<td>41</td>
</tr>
<tr>
<td>11</td>
<td>70</td>
<td>92</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>37</td>
<td>53</td>
<td>13</td>
</tr>
</tbody>
</table>

Cumulative incidence (%)
Relationship Between FFR and Outcomes

FAME 2: Patients with angiographically significant stenoses treated with OMT

Event Rates (%)

0 2 4 6 8 10 12 14 16 18

FFR > 0.90 0.81-0.90 0.71-0.80 0.61-0.70 0.51-0.60 <0.50

Stenosis Severity (FFR)

Courtesy of: Bernard De Bruyne, MD, PhD

ISCHEMIA Overview

International Study of Comparative Health Effectiveness with Medical and Invasive Approaches

Chair - Judith Hochman, Co-Chair/PI - David Maron
Co-PIs William Boden, Bruce Ferguson, Robert Harrington, Gregg Stone, David Williams

- **Patients**: stable, at least moderate ischemia (core lab)
- **Primary Aim**: to determine whether an initial invasive strategy of cath and revascularization (PCI or CABG) + OMT is superior to a conservative strategy of OMT alone, with cath reserved for OMT failure
- **Composite Primary Endpoint**: CV death or MI
- **Major Secondary Endpoint**: angina-related QOL
- **Sample Size**: 8,000
- **Follow-up**: average ~4 years

ISCHEMIA

Oct 2014
Controversies in Coronary Revascularization

- **SIHD**
 - Accepted Indications for revascularization
 - **Controversies** in revascularization
 - How much Ischemia to Revascularize
 - How to revascularize 3 VD: CABG vs PCI vs HCR
 - How to revascularize LMCA: CABG vs PCI

- **ACS**
 - Accepted Indications for revascularization
 - Controversies in revascularization
 - Non culprit vessel in STEMI: PCI vs Med tx.
 - Culprit vessel in STEMI: Angio vs OCT guided
HCR Clinical Significance

- Combines IMA graft to LAD & PCI to non-LAD targets for multi-vessel CAD that includes proximal LAD (or LM) & ≥ 1 other vessel

- Presumed to optimize outcomes by combining
 - Durability and benefit of surgical LIMA to LAD
 - Minimal invasiveness of PCI
 - Avoid morbidity and late SVG failure of multi-vessel CABG
 - Minimize repeat revascularization, esp LAD
Risk-Adjusted MACCE-Free Survival Analysis

HCR (n=200)	PCI (n=98)

<table>
<thead>
<tr>
<th>MACCE Free Survival (Months)</th>
<th>HCR</th>
<th>PCI w/ DES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>5</td>
<td>0.98</td>
<td>0.95</td>
</tr>
<tr>
<td>10</td>
<td>0.96</td>
<td>0.90</td>
</tr>
<tr>
<td>15</td>
<td>0.94</td>
<td>0.85</td>
</tr>
<tr>
<td>20</td>
<td>0.92</td>
<td>0.80</td>
</tr>
<tr>
<td>25</td>
<td>0.90</td>
<td>0.75</td>
</tr>
</tbody>
</table>

FAME Study: One Year Outcomes

- **Angio-Guided**
 - Death: 3%
 - MI: 8.7%
 - Repeat Revasc: 9.5%
 - MACE: 18.3%

- **FFR-Guided**
 - Death: 1.8%
 - MI: 5.7%
 - Repeat Revasc: 6.5%
 - MACE: 13.2%

- **Statistical Significance**
 - Death/MI: p=0.04
 - MACE: p=0.02
MACE in SYNTAX – 3VD and FAME

![Graph showing MACE in SYNTAX and FAME](image)

Functional SYNTAX Score:

![Graph showing Functional SYNTAX Score](image)

Functional SYNTAX Score:

FAME 3

- 1500 pts with multivessel CAD
- Considered candidates for CABG + PCI
- Randomized to FFR guided PCI vs CABG
- Non-inferiority trial design
- Primary: One Year follow-up for Death, MI, CVA, Revascularization
- Key Secondary: Three Year follow-up for Death/MI/CVA
Controversies in Coronary Revascularization

• SIHD
 - Accepted Indications for revascularization
 - Controversies in revascularization
 - How much Ischemia to Revascularize
 - How to revascularize 3 VD: CABG vs PCI vs HCR
 - How to revascularize LMCA: CABG vs PCI

• ACS
 - Accepted Indications for revascularization
 - Controversies in revascularization
 - Non culprit vessel in STEMI: PCI vs Med tx.
 - Culprit vessel in STEMI: Angio vs OCT guided

No Adverse Events with Deferred CABG for FFR≥0.80

N=213 patients with 30-70% Left main stenosis

Hamilos. Circulation 2009;120:1505-1512
PCI vs. CABG for Left Main Disease
Meta-analysis of 4 RCTs, 1,611 Patients

1 Year Mortality

<table>
<thead>
<tr>
<th></th>
<th>PCI</th>
<th>CABG</th>
<th>OR (95%CI)</th>
<th>p-Value</th>
<th>OR (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEMANS</td>
<td>1/52</td>
<td>4/53</td>
<td>0.24 (0.03-2.23)</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>SYNTAX left main</td>
<td>15/355</td>
<td>15/336</td>
<td>0.94 (0.45-1.96)</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Boudriot et al.</td>
<td>2/100</td>
<td>5/101</td>
<td>0.39 (0.07-2.07)</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>PRECOMBAT</td>
<td>6/300</td>
<td>8/300</td>
<td>0.75 (0.26-2.17)</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>Fixed effects estimate</td>
<td>3.0% (24/807)</td>
<td>4.1% (32/790)</td>
<td>0.74 (0.43-1.28)</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Random effects estimate</td>
<td></td>
<td></td>
<td>0.74 (0.43-1.28)</td>
<td>0.29</td>
<td></td>
</tr>
</tbody>
</table>

\(I^2 = 0\% \)

Favors PCI

Favors CABG

Capodanno et al, JACC 2011;58:1426-32

PCI vs. CABG for Left Main Disease
Meta-analysis of 4 RCTs, 1,611 Patients

1 Year Myocardial Infarction

<table>
<thead>
<tr>
<th></th>
<th>PCI</th>
<th>CABG</th>
<th>OR (95%CI)</th>
<th>p-Value</th>
<th>OR (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEMANS</td>
<td>1/52</td>
<td>3/53</td>
<td>0.33 (0.03-3.25)</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>SYNTAX left main</td>
<td>15/355</td>
<td>14/336</td>
<td>1.02 (0.48-2.14)</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>Boudriot et al.</td>
<td>3/100</td>
<td>3/101</td>
<td>1.01 (0.20-5.13)</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>PRECOMBAT</td>
<td>4/300</td>
<td>3/300</td>
<td>1.34 (0.30-6.03)</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>Fixed effects estimate</td>
<td>2.8% (23/807)</td>
<td>2.9% (23/790)</td>
<td>0.98 (0.54-1.78)</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Random effects estimate</td>
<td></td>
<td></td>
<td>0.98 (0.54-1.78)</td>
<td>0.95</td>
<td></td>
</tr>
</tbody>
</table>

\(I^2 = 0\% \)

Favors PCI

Favors CABG

Capodanno et al, JACC 2011;58:1426-32
PCI vs. CABG for Left Main Disease
Meta-analysis of 4 RCTs, 1,611 Patients

1 Year Stroke

<table>
<thead>
<tr>
<th></th>
<th>PCI</th>
<th>CABG</th>
<th>OR (95% CI)</th>
<th>p-Value</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEMANS</td>
<td>0/52</td>
<td>2/53</td>
<td>0.20 (0.01-4.09)</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>SYNTAX left main</td>
<td>1/355</td>
<td>8/336</td>
<td>0.12 (0.01-0.93)</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Boudriot et al.</td>
<td>PRECOMBAT</td>
<td>0/300</td>
<td>2/300</td>
<td>0.20 (0.01-4.16)</td>
<td>0.30</td>
</tr>
<tr>
<td>Fixed effects estimate</td>
<td>0.1%</td>
<td>1.7%</td>
<td>0.15 (0.03-0.67)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Random effects estimate</td>
<td>0.15</td>
<td>0.0 (0.03-0.67)</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I²=0%

Capodanno et al, JACC 2011;58:1426-32

PCI vs. CABG for Left Main Disease
Meta-analysis of 4 RCTs, 1,611 Patients

1 Year MACCE

Capodanno et al, JACC 2011;58:1426-32
Patient Profiling in LM Revascularization

Local Heart team (surgeon & interventional cardiologist) assessed each patient in regards to:

- Patient’s operative risk
- Coronary lesion complexity (SYNTAX score)
- Goal: SYNTAX score to provide

Valjimigle et al, Am J Cardiol 2007;99:1072–1081
Unprotected left main coronary artery disease – patients with low and mid tertile SYNTAX scores potentially suitable for both PCI and CABG

UPLM PCI to Improve Survival (ACS)

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ila—For UA/NSTEMI if not a CABG candidate</td>
<td>B</td>
</tr>
<tr>
<td>Ila—For STEMI when distal coronary flow is <TIMI grade 3 and PCI can be performed more rapidly and safely than CABG</td>
<td>C</td>
</tr>
</tbody>
</table>
Controversies in Coronary Revascularization

• SIHD
 - Accepted Indications for revascularization
 - Controversies in revascularization
 - How much Ischemia to Revascularize
 - How to revascularize 3 VD: CABG vs PCI vs HCR
 - How to revascularize LMCA: CABG vs PCI

• ACS
 - Accepted Indications for revascularization
 - Controversies in revascularization
 - Non culprit vessel in STEMI: PCI vs Med tx.
 - Culprit vessel in STEMI: Angio vs OCT guided

AUC 2012: At the Bedside

Patel, et al. JACC 2009; 53:530-553
Controversies in Coronary Revascularization

• SIHD
 - Accepted Indications for revascularization
 - Controversies in revascularization
 - How much Ischemia to Revascularize
 - How to revascularize 3 VD: CABG vs PCI vs HCR
 - How to revascularize LMCA: CABG vs PCI

• ACS
 - Accepted Indications for revascularization
 - Controversies in revascularization
 - Non culprit vessel in STEMI: PCI vs Med tx.
 - Culprit vessel in STEMI: Angio vs OCT guided

Case 1: FFR for Assessment Of Non-Culprit Lesions in STEMI

• 68 yr old male, HTN, DM, high chol, with 2 hours of severe substernal chest pain and inferior ST segment elevations

• Brought emergently to the cath lab.
AUC 2012: At the Bedside

N=101 patients undergoing PCI for AMI
(75 STEMI and 26 N-STEMI)
N= 112 lesions

FFR of non-culprit lesions was measured at time of culprit vessel PCI and repeated 35+4 days later

In a subgroup of 14 patients, IMR was also measured at time of culprit vessel PCI and repeated 35+4 days later

Ntalianis et al. JACC Int. Volume 3, Issue 12, December 2010, Pages 1274-1281
FFR in Non-Culprit Bed Acute Setting

<table>
<thead>
<tr>
<th></th>
<th>Acute Phase (n = 101)</th>
<th>Follow-Up (n = 101)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEF (%)</td>
<td>59 ± 15</td>
<td>61 ± 14</td>
<td>NS</td>
</tr>
<tr>
<td>LVEDP (mm Hg)</td>
<td>18 ± 7</td>
<td>17 ± 7</td>
<td>NS</td>
</tr>
<tr>
<td>DS nonculprit (%)</td>
<td>56 ± 14</td>
<td>55 ± 14</td>
<td>NS</td>
</tr>
<tr>
<td>MLD nonculprit (mm)</td>
<td>1.32 ± 0.46</td>
<td>1.31 ± 0.50</td>
<td>NS</td>
</tr>
<tr>
<td>RD nonculprit (mm)</td>
<td>2.9 ± 0.70</td>
<td>2.7 ± 0.70</td>
<td>NS</td>
</tr>
<tr>
<td>TIMI flow nonculprit</td>
<td>2.93 ± 0.30</td>
<td>2.97 ± 0.20</td>
<td>NS</td>
</tr>
<tr>
<td>cTFC nonculprit</td>
<td>15 ± 6</td>
<td>15 ± 6</td>
<td>NS</td>
</tr>
</tbody>
</table>

Values are mean ± SD.

FFR = fractional flow reserve; IMR = index of microcirculatory resistance; LVEDP = left ventricular end-diastolic pressure; LVEF = left ventricular ejection fraction; MLD = minimum lumen diameter; RD = reference diameter.

Ntalaniás et al. JACC Int. Volume 3, Issue 12, December 2010, Pages 1274-1281

Preventative Angioplasty in MI

450 pts with STEMI MVD, 5 UK Centers

HR was 0.35
For composite and each individual endpoint

Controversies in Coronary Revascularization

• **SIHD**
 - Accepted Indications for revascularization
 - Controversies in revascularization
 - How much Ischemia to Revascularize
 - How to revascularize 3 VD: CABG vs PCI vs HCR
 - How to revascularize LMCA: CABG vs PCI

• **ACS**
 - Accepted Indications for revascularization
 - Controversies in revascularization
 - Non culprit vessel in STEMI: PCI vs Med tx.
 - Culprit vessel in STEMI: Angio vs OCT guided

Position of MLA in relation to Plaque Rupture

...not necessarily coincident: prox or distal

[Image of Plaque Rupture, MLA site, and Proximal Reference]

Courtesy of Dr. Giulio Guagliumi
OCT for Identification of Culprit Lesion Morphology

Plaque Rupture

![Plaque Rupture Image](image)

Plaque Erosion

![Plaque Erosion Image](image)

Courtesy of Dr. Giulio Guagliumi

Plaque Erosion in STEMI patients Tx with DAPT Only

![Table 2](image)

Table 2: Procedural Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Group 1 (n = 12)</th>
<th>Group 2 (n = 19)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycoprotein IIb/IIIa inhibitors</td>
<td>4 (33)</td>
<td>4 (21)</td>
<td>0.73</td>
</tr>
<tr>
<td>ADP antagonists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>7 (58)</td>
<td>18 (95)</td>
<td>0.012</td>
</tr>
<tr>
<td>Prasugrel</td>
<td>5 (42)</td>
<td>1 (5)</td>
<td></td>
</tr>
<tr>
<td>Angiographic analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-aspiration DS, %</td>
<td>79.4 ± 33.3</td>
<td>67.9 ± 17.3</td>
<td>0.05</td>
</tr>
<tr>
<td>Post-aspiration DS, %</td>
<td>27.1 ± 19.4</td>
<td>32.0 ± 35.2</td>
<td>0.48</td>
</tr>
<tr>
<td>Pre-aspiration TIMI flow grade ≤2</td>
<td>9 (75)</td>
<td>15 (79)</td>
<td>0.85</td>
</tr>
<tr>
<td>Post-aspiration TIMI flow grade <2</td>
<td>1 (8)</td>
<td>0</td>
<td>0.81</td>
</tr>
<tr>
<td>Total ischemic time, h</td>
<td>3.5 ± 3.0</td>
<td>2.8 ± 2.3</td>
<td>0.82</td>
</tr>
</tbody>
</table>

At 753 days follow up all patients were asymptomatic

Prati et al. JACC CV Img, Vol 6, No 3, 2013
Controversies in Coronary Revascularization

• **SIHD**
 - Accepted Indications for revascularization
 - Controversies in revascularization
 - How much Ischemia to Revascularize
 - How to revascularize 3 VD: CABG vs PCI vs HCR
 - How to revascularize LMCA: CABG vs PCI

• **ACS**
 - Accepted Indications for revascularization
 - Controversies in revascularization
 - Non culprit vessel in STEMI: PCI vs Med tx.
 - Culprit vessel in STEMI: Angio vs OCT guided

Atlanta CCU
April 15, 2016

Habib Samady MD FACC FSCAI
Professor of Medicine
Director, Interventional Cardiology, Emory University
Director, Cardiac Catheterization Laboratory, Emory University Hospital